
Preliminary Observations on Restoration of Data
from Lossy Compression

Brian G. Maddox1

Anthony Jones2

Open-File Report

CONTENTS

CONTENTS..2
KEY WORDS...3
ABSTRACT..3
INTRODUCTION...4
BACKGROUND...4

Lossy Compression..4
Discreet Cosine Transform...5
Wavelet Compression...11
Problems with Compression Artifacts..13
A New Theory of Compression Restoration..14

METHOD AND TESTING..16
Data Collection...16
BruteForce Method...16
Modified BruteForce Method...17
Comparison Work..19
Genetic Algorithms..23
Initial Restored Images...25
Modified Brute Force Value Combinations Algorithm..27

DISCUSSION...28
FUTURE WORK..34

Genetic Algorithm Refinements...34
“Large Scale Fourier or Wavelet Analysis”...34
Continuous Random Number Values...35
Edge Detection Post Processing...36
Neural Network for Artifact Reduction..37
Recompression Study...37
More JPEG2000 Studies...37

CONCLUSION...38
REFERENCES..40

2

KEY WORDS

Data restoration lossy compression

ABSTRACT

Traditionally, data that is discarded during lossy compression has been assumed to be
lost forever. During decompression, this loss of data leads to visible image distortions
known as compression artifacts. Current methods of dealing with these distortions
involve using image processing to smooth out the images, leading to further distortions.
Mathematical and algorithmic techniques are being developed to actually restore some
of the data that was discarded during the lossy compression. This restoration can be
used to make the images more visually pleasing and better suited for image analysis
tasks.

Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

3

INTRODUCTION

Lossy image compression techniques have been existence for some time now. These
compression methods discard information in order to shrink the size of files for storage
or transmission to another system. Their basic operation uses mathematical
techniques to approximate what humans are capable of seeing and then discard data
that is deemed to be not noticeable to the eyes. Upon decompression, mathematical
extrapolations are used to recreate the scene based on the surviving image information.

As some information is discarded, these extrapolations cannot perfectly recreate the
original image. As a result, visible image distortions known as compression artifacts
appear in the decompressed image. The distortions can appear as visible blocks, as in
the case of traditional Joint Photographic Experts Group (JPEG) image compression, or
small line segments in the case of wavelet-compressed images. These artifacts
typically increase in number as the compression ratio is increased, leading to images
that are visually unappealing or unusable for image analysis work.

Current methods of dealing with compression artifacts involve using image processing
to smooth and/or blur the image to hide them. In many cases, this process starts with
some form of a blurring (typically Gaussian) to soften the edges in the image and
smooth out the artifacts. A denoising may also be applied to deal with any speckling
that the compression might have caused. Finally, the blurred image can then be
sharpened to reduce some of the blurriness that was caused in the initial step. Note
that all of these steps actually distort the image even farther from the original
uncompressed image, and only operate by trying to enhance the image's visual
appearance.

Techniques and algorithms are currently being researched to attempt to actually restore
some of the information that was discarded during the compression phase.
Computational methods such as genetic algorithms can be used to perform calculations
faster than available through a simple brute-force method. Algorithmic variations to
routines such as Fourier Transformations can be used to create images that possibly
match the uncompressed version as well as determining when to stop restoration
attempts.

BACKGROUND

Lossy Compression

The are two methods of data compression available: lossy and lossless. Lossless
compression reduces data sizes without discarding any information and is able to
decompress the file into an exact copy of the original. This is the type of compression

4

used by PKWARE's pkzip and Winzip Computing's Winzip utilities. Lossy compression
works by discarding information in order to compress data. During decompression, the
algorithm works to estimate what information was discarded. This is how image
compression such as JPEG and Lizardtech's Mr.Sid operate. As it discards information,
lossy compression is usually able to achieve much higher levels of compression than
lossless. This paper, and the work it describes, focus on lossy image compression
methods.

Lossy compression was developed for two main reasons. The first reason is
transmission between systems. The early days of technology featured network
communications that were an order of magnitude slower than what can be found today.
Images of even a few hundred kilobytes in size could require considerable time to
transfer between computers. This became even more of a problem in the early days of
the World Wide Web as sites became more graphically oriented. Compressing images
to a much smaller size allowed them to be more easily transferred between computers.
As the primary purpose was for visual display, lossy compression was well suited for
this purpose. The second reason is for storage purposes. Permanent storage was
once quite expensive and hard to acquire. Storage in the early days was measured in
kilobytes instead of the gigabytes of today. The only way to store images was to
compress them down so that they would fit the storage media available.

As technology has progressed, some lossy compression formats have become de-facto
standards. JPEG File Interchange Format (JFIF), the file format encapsulating JPEG
compression, has become the most popular lossy compression format for images.
JPEG compression is based on the Discreet Cosine Transform (DCT) and is
representative of the past “state of the art” in image compression. It has also been well
studied and verified over the years as many applications depend on JPEG
compression. These reasons are also why this project chose JPEG compression as
one of the representative examples of image compression methods.

Discreet Cosine Transform

A simple description of the DCT is that it is a signal processing technique that is used to
express a signal waveform as a weighted sum of cosines. When applied to images, it
operates by converting the two-dimensional spatial representation of the image into
frequency space. This conversion is performed by using the values of the pixels along
the X and Y axes to represent frequencies of the same signal in two different
dimensions (Escena). Once in frequency space, the transform can then express the
numerical values of a group of pixels via a series of equations instead of discreet pixel
values. The lossy compression occurs when the least significant pixels in the group are
dropped during the conversion to equation representations. Upon decompression, the
equations are converted back into groups of pixels. However, as the least significant
pixels were dropped during the compression phase, they cannot be recovered during

5

decompression. Instead, the equations provide an estimation of the entire group of
pixels from the original image. This is the place where fine detail is normally lost during
JPEG compression.

More specifically, DCT compression is a specialized form of transform coding.
Transform coding is “a technique in which the source output is decomposed, or
transformed, into components that are then coded according to their individual
characteristics” (Sayood 373). Transform coding uses some advanced concepts from
statistics and calculus in order to convert data from one form to another. This method
involves selecting a subset of a data sequence of ordered pairs, using a mathematical
function to convert it to another representation, and then discarding data from the
converted sequence. This process is then reversed to obtain the original subset of
ordered pairs from the original data sequence.

Most ordered pairs in a sequence can be described by some function that can fit an
average line or curve through the data points. This is known as curve fitting in the
statistics world. It is generally used to take points from experimental data and fit a
function through them that describes the behavior of a specific phenomena. This
function allows someone to easily describe and predict the behavior of whatever it was
they were observing. It is also useful in order to determine if there is some pattern to
the data or if it is truly randomized. Graphically, this is known as plotting a regression
line through the dataset.

This curve that is fit through the ordered pairs also has other properties that can be
used to compress the sequence. The curve fit can be looked at as a function around
which the ordered pairs tend to cluster. This allows a transformation to be applied to
the sequence that converts it to another form. This new formatting of the sequence will
tend to be created so that the ordered pairs will cluster around one axis of a Cartesian
plane. If the ordered pairs were plotted on a graph, this can be visualized as rotating
the dataset until it lines up with one axis or the other. The transform here would involve
rotating the data by the angle formed between the average curve and an axis. Once in
the new formatting, one of the elements of the ordered pair will be found to have more
of a weight, sometimes called energy, than the other element. In this form,
compression can then occur by dropping the element of least weight in the sequence,
thereby reducing the number of elements that need to be encoded by fifty percent. In
the case of clustering around an axis, one of the elements can be assumed to be at
value zero. The remaining data is then encoded into another compressed form.

The data loss in transform encoding occurs when one of the elements of the ordered
pair is dropped. The transformed sequence will have elements that cluster around an
axis, but that does not mean that all elements will exactly fall on that axis. However, the
element in the ordered pair with the highest weight is kept, so that when reversing the

6

transformation, the transformed ordered pair is close to the original value. This loss of
data is usually deemed acceptable when dealing with audio and visual data as the
human senses will not normally notice the small differences between the encoded and
original data.

A real-world example is in order to explain the techniques of transform coding. It is
important to understand transform coding as it is at the core of many modern
compression methods. As an example, consider the following table of elements. The
ordered pairs are artificially generated and tend to cluster around the function y=x .
We will look at this example graphically to illustrate the concepts of transform coding.

The plot of these ordered pairs is given in Figure 2. The line y=x is also plotted on
the graph for comparison.

As this dataset clusters around the line y=x , we see that we can transform the
dataset by rotating it 45° so that it lines up with the x-axis. The value of 45° can be
derived either from geometry (the line y=x forms the diagonal of a square, which then
makes a right triangle) or computationally by taking arctan (a) based on the equation

7

Figure 1: Sample Data Points

Figure 2: Graph of Sample Ordered Pairs

0 0
5 3

10 11
15 13
20 22
25 24
30 34

0 5 10 15 20 25 30
0

2.5

5

7.5

10

12.5

15

17.5

20

22.5

25

27.5

30

32.5

35

y=a⋅x . In order to do this, we must use matrix algebra. The ordered pairs can be
considered to be a vector consisting of the x and y elements so that they take the form

of [xy] . To rotate these values, we must multiply them by a transformation matrix

based on the angle θ that takes the form of [cos(θ) sin (θ)
−sin(θ) cos(θ)] . Θ is the angle that is

made between the regression line and the x-axis. In this example, θ is 45°. Multiplying

the matrices together then gives the new equation [x newynew]=[cos(45) sin (45)
−sin (45) cos(45)][xy] . The

values in Figure 3 represent the ordered pairs in Figure 1 with the rotation applied and
Figure 4 is the new values plotted out on a graph.

We can see both numerically and graphically that the transformed ordered pairs vary by
a small amount in the y-axis, from -1.75 to 2.75, and that most of the variation is
contained in the x-axis which ranges from 0 to 45.27. Therefore, the transformed x-
values contain most of the weight in each ordered pair. As the x-axis contains most of
the energy, we can drop the y-axis values whenever we encode the sequence, thus

8

Figure 3: Rotated Values

Figure 4: Plot of Rotated Values

0 5.65 14.85 19.79 29.7 34.64 45.27
-1.75

-1.5
-1.25

-1
-0.75

-0.5

-0.25
0

0.25

0.5
0.75

1
1.25

1.5

1.75
2

2.25
2.5

2.75

0.00 0.00
5.65 -1.44

14.85 0.64
19.79 -1.51
29.70 1.28
34.64 -0.87
45.27 2.62

achieving a fifty-percent compression. The data loss in this case comes from the
discarding of the second elements of each ordered pair in the sequence.

To reverse the compression, we would start off by reading in the encoded sequence
that only contained the first values of each ordered pair. A sequence would be
generated containing the actual first values of each transformed ordered pair and 0
substituted as the second value for every ordered pair. We then must rotate the
sequence back so that we can undo the original transform. To do this, the generated
sequence must be multiplied by the inverse of the original rotation matrix, which results

in the following matrix: [cos(θ) −sin (θ)
sin (θ) cos(θ)] . Applying this reverse transformation to the

sequence yields the reconstructed original sequence given in Figure 5. The deltas
between the original sequence and the reconstructed sequence are given in Figure 6.

Figure 6 demonstrates how one can transform an original sequence of values, drop
fifty-percent of them, and then later construct a sequence that is extremely close to the
original uncompressed sequence. The deltas above can be seen to be very close to
the original values, with an average numeric error of -0.07 for the first elements and
0.07 for the second elements. For pure numeric data such as financial transactions,
this error is unacceptable. However, for image and audio applications, such a small
loss would be barely noticeable to the observer and represent a good trade-off between
storage sizes and quality.

This trade-off is the basis for the DCT compression used in JPEG compression. It gets
its name as each element in the transform matrix that DCT uses is made up of
functions of cosines. The DCT in a single dimension is given by the equation

9

Figure 5: Reconstructed Sequence

0.00 0.00
3.98 4.01

10.45 10.55
13.93 14.06
20.91 21.10
24.38 24.61
31.86 32.16

Figure 6: Deltas between reconstructed and original

0.00 0.00
1.02 -1.01

-0.45 0.45
1.07 -1.06

-0.91 0.90
0.62 -0.61

-1.86 1.84

G f=√ 2n C f∑ pt cos [(2 t+1) f π

2 n] where Cf =
1

√2
for f = 0 and Cf = 1 for f > 0

(Salomon 290). DCT compression focuses most of the input energy into the first few
coefficients of the transform. When looking at image data in frequency space, the
transformation used by DCT is good at isolating various frequencies of the image data.
The outputs from this transform consist of mostly zero or very small values with only a
few large (thus requiring more storage space) numeric values. These first coefficients
contain the low-frequency information of the image while the last portion of the
coefficients contain the high-frequency information. DCT compression seeks to focus
more attention on preserving the low-frequency information while discarding much of
the higher-frequency data. The low-frequency information is the most noticeable
portion of the image, thus requiring more care to maintain it as it represents the overall
structure of the image. The higher-frequency data contain the fine detail of the image,
much of which would not normally be perceptible to the human eye. Thus, the higher
frequencies are not as important to restore properly.

The compression of the DCT is done by quantizing the transform coefficients. The
smaller coefficients, usually the ones associated with high-frequency information, are
quantized rather coarsely and sometimes dropped to zero. The larger coefficients that
represent the low-frequency information are usually quantized carefully and rounded to
the nearest integer. This quantization represents the last step of the compression, and
can be reversed by taking the inverse of the DCT to decompress. However, as the
transform coding example demonstrated, this data will not be identical to the original
dataset.

DCT compression applications typically will break the data up into individual elements
and then apply compression to them instead of the entire dataset at once. The reason
for this is that there is a trade-off between the transform coefficients based on each
data block. Small data blocks can result in a small number of small-valued coefficients.
In this case, all of the data could be lost as it would be dealt with as consisting entirely
of high-frequency information. On the other hand, large blocks can lead to a case
where all of the information is treated as low-frequency information and the compressed
data ends up unnecessarily large. For JPEG compression, the block size of eight by
eight pixels is normally used.

A before and after example of DCT-based JPEG compression can be found in the next
two figures. Note that the fine detail in the compressed image has been lost, which
correlates to the compression focusing more energy into preserving the low-frequency
information at the expense of the high-frequency (higher detail) information. However,
the overall structure of the image (the low-frequency data) is still preserved quite well.
In fact, when viewed at the proper size and zoom ratio, the absence of the high-
frequency information is hardly noticeable.

10

Figure 7: Uncompressed Image

Figure 8: DCT Compressed Image

Wavelet Compression

Just as the DCT compression used in JPEG is representative of past state-of-the-art
compression techniques, wavelet compression represents more modern leading-edge
compression technologies. It is the compression behind the new JPEG2000 standard
as well as other packages being sold for compression of large raster datasets. Wavelet
compression is a direct descendant of the mathematics of the Fourier Transform. The
Fourier Transform is a method of describing a continuous function in terms of sines and
cosines. Wavelet transforms are able to deal with non-continuous functions, which
makes them very useful for image compression.

In general, Wavelet compression works by first decomposing a signal into various
components. The core idea is to analyze the signal by scale. The decomposition is
accomplished through an array of filter banks, where each bank subsamples the
original sequence into various subsequences. The subsequence can be, for example,
a part of the original sequence where each sequence contains the even-numbered
elements and the other the odd-numbered elements. Once the original sequence is
decomposed, each subsequence is then down sampled based on a technique similar to
that described above. The subsequence is then quantized to reduce the amount of
data that it has to carry even further. The final step in the process is that actual
encoding that creates the compressed information.

For a more in-depth explanation of wavelet compression, we must first briefly look at
wavelet's ancestor, the Fourier Transform. Fourier's theorem, the basis for the

11

transform, states that “it is possible to form any one-dimensional function f(x) as a
summation of a series of sine and cosine terms of increasing frequency. The Fourier
transform of the function f(x) is written F(u) and describes the amount of each
frequency term that must be added together to make f(x).” (Russ 285). The standard
equation of the Fourier Transform is F (u)=∫ f (x)e−2π iux dx . This use of the

integral relies on Euler's Formula, which states that e−2π iux=cos(2π ux)−sin (2πux) .
The integration in this case serves to perform an averaging operation for the entire time
interval of the signal. This can tell us what frequencies are present, but not when they
occurred.

To determine when (and therefore where) a particular portion of a signal occurred, we
must bracket the signal and perform a Fourier Transform on each individual piece. The
problem with this method is that sine and cosine functions are continuous and smooth
functions. When given a non-continuous or non-smooth function, they will have trouble
approximating the original function. To make matters worse, there is some uncertainty
as to what the original signal actually was due to approximation errors and lack of
information as to where a particular frequency occurred.

In order to deal with some of these problems, wavelet compression performs a multi-
resolution analysis on the image data in a signal processing context. One of the
problems with the previously described bracketed Fourier Transform method (also
known as the short-term Fourier Transform) is that the bracket size is fixed. This
causes problems in that it can sometimes be too small or large, resulting in the wrong
types of signal information being filtered out. Wavelets solve this problem by operating
on the signal at multiple resolutions.

The function for a windowed Fourier Transform is given by the equation
F (ω , τ)=∫ f (t)g∗(t−τ) , where the function g(t) defines the size of the window

(Sayood 457). In wavelet terms, this function is known as the mother wavelet. By
varying the window sizes, we can create various basis functions to perform the multi-
resolution analysis. In the example above, if we look at the first interval, where is
zero, the first basis functions are g(t), g(t)ejg(t)ej2, and so on. In this way, as the
frequency of the signal increases, we decrease the size of the window so that we can
increase the resolution of that signal.

The advantage of processing a signal at multiple resolutions is that temporal analysis
can be performed on the signal by using a small high-frequency version of the mother
wavelet, while a frequency analysis can be done by examining a larger low-frequency
version. This multi-resolution analysis also works well for compression as it is able to
handle sharp spikes or discontinuities in the input function. For example, if we look at

12

an image as a two-dimensional grid where the pixel value is a height, we can see how
we can create a function that passes through the input points. A Fourier Transform will
work, but not work well as a photographic scene does not always contain smooth
graduations between color values. Wavelets, however, are better able to map an image
in this case as the multi-resolution analysis can handle the sharp spikes between color
values in an image.

Problems with Compression Artifacts

As both of the above-mentioned methods are a form of transform coding, they each
suffer the accuracy problems of this encoding method. As demonstrated above,
transform coding seeks to encode the more energetic portion of a sequence. However,
even then the most energetic members are approximated, while the least-energetic are
typically dropped and have a higher margin of error when restored. In terms of images,
these approximations can lead to visible distortions in an image that are also known as
compression artifacts. In DCT compression, these artifacts are manifested by
“blockiness” in the image. Wavelet compression has artifacts that appear as small line
segments scattered throughout the image. The following figures demonstrate these
compression artifacts.

13

Figure 9: DCT Example: Uncompressed image Figure 10: DCT Example: Compressed JPEG

In the DCT case, one can see that not only do the block artifacts distort the objects in
the image, but they also distort the colors in the image as well. The DCT compressed
image was compressed by roughly a 10:1 compression ration. In the wavelet case, the
compression artifacts distort the image by erasing certain features. The wavelet
example is taken from data provided by the Missouri Spatial Data Information Service.
While these may be considered extreme cases, historical data is also likely to be highly
compressed as it would have had to fit on the storage media available in the past.

In addition to the visible image degradation, compression artifacts also hinder other
analysis of the images. For example, feature extraction can be near impossible when
performed on a highly compressed image. Edge detection, a component often used in
feature extraction, becomes difficult as discreet edges can disappear in a compressed
image. False edges introduced by compression artifacts can also make edge detection
difficult. Change detection can also be very difficult as features can be distorted or
completely lost after compression.

A New Theory of Compression Restoration

Once lossy compression is performed, the original data is for all intents and purposes
lost in the compressed output image. If the original image is retained, one can simply
go back to the original to get the uncompressed data. However, if the original
uncompressed sample is lost, all that remains of the original data is the compressed
output. This is the case with many geospatial data holdings, where the data had to be
compressed in the past as storage technology was very limited.

14

Figure 11: Wavelet Example: Uncompressed image Figure 12: Wavelet Example: Compressed image

Modern processing capabilities and advancements in computer science have provided
much more computational power than previously available. Distributed processing has
become common with the advent of Beowulf clusters (Beowulf.org). Processors are
approaching a stage where a single processor can contain multiple execution cores.
Computational techniques such as genetic algorithms provide quicker methods to solve
very complex problems. All of these techniques are coming together to provide greater
processing capabilities than previously imagined.

It is these advances that allow a new theory to be developed about addressing the
problem of restoring data that was discarded during lossy compression. There is an old
joke that 10,000 monkeys with 10,000 typewriters can eventually write War and Peace.
In theory, there is a grain of truth in this joke. By randomly creating combinations of
letters to form words, one in theory could eventually stumble across the combination of
words that would make up a great novel. However, those 10,000 monkeys may all have
to randomly type a few million years to come up with War and Peace.

The same idea holds true for images. Consider a given input image with a specific
width, height, and photometric. One can start with a blank image of the same
dimensions and photometric and perform a linear search of pixels to eventually
reproduce the original image. In this method, one would have to try every possible
value for a given pixel, and every possible combination of those values across the
image. Eventually, such an exhaustive search would find the combination of pixel
values to exactly match any given sample.

This works because any image is simply a combination of pixel values in a particular
order. To humans, this combination produces a picture. A computer, however, sees an
image simply as an array of pixel values. The array of pixel values is nothing more than
a sequence of numbers with certain bounds imposed (i.e., RGB imagery has three
components per pixel and each component can only have values of 0 to 255). This
known bounds means that searching through each component value can eventually
recreate the original sequence.

This idea can then be applied to compressed imagery. Compression operations tend to
be repeatable when the same parameters are applied to the same image. We can then
extend the idea of a linear search to say that given a compressed output and the
compression parameters used to create that output, we can create test input images
and perform a linear search to find the original uncompressed image. To do this, we
must first create an input image with the same dimensions and photometric as the
compressed output, compress our sample input, and then compare the generated
compressed image to the compressed sample. As will be discussed later in this paper,
this in practice is not quite as easy as the uncompressed case as we must deal with
compression artifacts and the incredibly long run times associated not only with creating

15

the input images, but also with compressing them.

METHOD AND TESTING

Data Collection

Early on in the project, data collection was deemed to be a time consuming, yet
important, activity. The images produced during various stages of testing needed to be
stored so they could be analytically as well as subjectively examined.

The first step in data collection was storing the array data that produced a matching
image. The medium used for this was a TIFF image file. It was also deemed
necessary to output the compressed image produced by the match into a JPEG file.
Comparing the input compressed seed image file to the match's JPEG will show just
how close the array data for the match should be to the original uncompressed image.

After these initial steps, many more variables were added to the algorithms and needed
to be logged as well. Both the modified brute force and the genetic algorithms output
their own Comma Separated Values (.csv) file. A CSV file can be imported into most
any spreadsheet program for easy post in-depth analysis. The CSV file contains all
variables and inputs used by the algorithm, as well as data relevant to the matches
found. This makes it very easy to see what settings were used, recreate test runs, and
post analysis.

A differencing image program was created to compare two images and give statistics on
how closely related the images were. The two images compared generally are the
compressed seed image and the compressed match. The differencing program outputs
such data as the maximum positive difference, the maximum negative difference, and
the minimum difference between two corresponding pixels in the two images. It also
gives the mean, standard deviation, and similarity percentage match of the two images
being compared. These calculations are done for each color sample. For example, a
RGB image would have calculations with statistics for the red, green, and blue channels
separately. The differencing program also outputs all this data and more to a CSV file.

Brute-Force Method

The classic definition of the Brute-Force method is that it is a “programming style that
does not include any shortcuts to improve performance, but instead relies on sheer
computing power to try all possibilities until the solution to a problem is found”
(webopedia.com). This method is computationally complex as there is no optimization
of the algorithm used. However, it has the advantage that it always returns the correct

16

result, even though it may take large amounts of computational resources and long
processing times.

The initial testing method was to closely follow the theory and perform a brute-force
search of all of the possible combinations of input images. This consisted of examining
the compressed sample, creating a sample data area that matched the dimensions and
photometric of the compressed sample, and performing a linear search by looping each
pixel through all possible values. The linear search ran by starting each color
component of each pixel in the image at the minimum value, and searching through
until the maximum pixel component values were reached. Each generated image was
then compressed using the same parameters and compression format that was used
on the compressed sample. The generated compressed output was then compared to
see if it matched the compressed input. If not, the linear search continued.

It quickly became obvious that a true brute-force method was completely unworkable
for this type of situation. A simple linear search of all possible pixel values can be done
fairly quickly on modern hardware. However, each generated sample image had to be
compressed, and the compression step is a non-trivial operation. In addition, each
compressed test image had to be compared to the compressed sample image on a per-
pixel basis. These additional steps added a large amount of processing time to the
problem. In fact, a worst-case analysis estimated that for a 64x64 pixel image, the
number of pixel combinations that would have to be tested exceeded the number of
atoms in the known universe. The run-time of these combinations run on a 3.0
gigahertz Pentium 4 was estimated to take 1.2 million years. Clearly, a better solution
was needed.

Modified Brute-Force Method

In order to solve the run-time problems of a true brute-force method, a new way of
looking at generated images was introduced. If we look at a linear search of pixel
values, there is some commonality between successive images as only a few pixels are
different between those images. We can visualize this by taking each image generated
by a linear search and stacking them one on top of each other from the first (empty)
image generated to the final image where each pixel component is at its maximum
value. If we pick any given image in this stack, then the images that surround our
chosen image will be very similar to what we picked.

This method can then be extended to develop an improvement upon the brute-force
algorithm. Compression algorithms may modify an image by introducing artifacts and
some other modifications, but the compressed image still looks like the original.
Compression will not take an image of a car and turn it into a picture of an elephant. So
if we go back to the image stack idea, we can take an image out of the stack, compress

17

it, and roughly end up with an image that is near the original within that stack. In this
sense, compression does not result in the same image, but one that is spatially similar
to the original.

By taking this point of view, the brute-force method can be greatly improved. Instead of
searching the entire stack, suppose that we take our compressed image and we want to
find the original. We can find where in the stack the compressed image fits, and then
based on the previous discussion, we know that the original image is spatially near our
compressed sample. So, the exhaustive linear search suddenly becomes a small
subset search of the entire image space. This is a huge improvement as it greatly
reduces the number of images that must be tested, although it does still leave a large
number left. This process begins by using the original compressed sample image and
creating a feedback loop. The idea behind this is that the compressed input image
primes the new loop. The subset is then bracketed by a lower bound where each pixel
in the input image is subtracted by a set value and an upper bound where each pixel
has a value added to it. Once we know this subset, we can begin searching it.

With the new algorithm and theory in place, testing then began by running the
experimental algorithms on a 3.0 gigahertz Pentium 4 workstation. It was quickly
obvious that while the problem size was magnitudes upon magnitudes smaller, it was
still too massive to accomplish within any human lifetime. An example of this can be
seen in a very small 8x8 pixel image in 8 bit gray scale. Testing every possible
combination of images would require 256(8*8) compressions. This method limits the 256
possibilities for a pixel color to a specified range. In example, suppose a range of -20
to +20 around each pixel is used. This would produce rather than 25664 combinations
of images, but a much smaller (40+1)64 image combinations. The amount of
combinations is then about 1*1051 times smaller. Yet again, this number of
combinations is still not feasible with today's fastest processors. One attempt to fix the
sheer amount of combinations is to limit the range to very small numbers, such as -5 to
+5. This would make only (10+1)64 combinations of images. But even at a rate of
10,000 compressions a second, this would take 1.4*1055 years.

Finally it was realized that doing any type of linear or complete problem search is
impossible, and the Monte Carlo approach was integrated in the algorithm. The
definition of the Monte Carlo algorithm from the National Institute of Standards and
Technology is, “A randomized algorithm that may produce incorrect results, but with
bounded error probability. (Black)” This randomization was used to not search the
entire stack of possible image combinations, but to randomly pick images out of that
stack to test. The idea behind testing random images is that most of the images in the
entire problem size are very similar. Using this method we can test much more variety,
and hope for an image match much quicker. However since the Monte Carlo algorithm
is not guaranteed to find the exact answer, a measurement is needed of how close an
image guess is to the exact solution. This is explained in much more detail in the

18

comparison work section.

After including all these modifications, the modified brute force algorithm currently
works as follows. First, all desired variables and parameters are decided upon before
execution. The compressed image (seed image) that we want to find the original
uncompressed image of is loaded. A random image is generated during each iteration
based off the compressed image's original pixel values modified by a random number
between the negative range and positive range. Once every pixel has had a random
modifier added or subtracted from it, a new “guess” image of the original uncompressed
image is generated. This guess image then needs to be tested to see if it is indeed
what we think the original uncompressed image should look like. This is done by
compressing the guess image using the same compression parameters used to create
the seed image in the first place. The output from this is then compared to the seed
image to determine if it is indeed what we think the uncompressed image should look
like (explained in next section). If a match is determined, then the randomly generated
image guess , the matching compressed image guess, and information about the match
is outputted in file form. The algorithm then randomly generates another guess image
to test for the next iteration. This continues until the desired number of iterations has
been completed.

Comparison Work

Some of the most important work in this project is determining when a generated
compressed image is “close” to the original compressed sample, when the processing
is done, and when the image that best matches the original uncompressed image is
found. It is simple for a human to look at a series of images and pick the best of the
group. However, it is much more difficult to teach a computer how to look at images in
the same way that people do. In addition, people may miss minute details that are
important to restore. Several methods were used in order to try to find a good balance
between fast and accurate comparison algorithms.

The first and simplest method used to test if generated compressed image is close to
the original compressed sample image was a simple pixel value check. This worked by
going through all values in both images and if there was a discrepancy, the generated
image was deemed to not be a match and discarded. The ramifications of using an
exact match criteria meant that the only exact matches found were those for highly
compressed images. In general, the higher the image compression, the larger amount
of different images there are that can create that same compressed image. As the
compression lessens, the amount of matching images goes down quickly.

In order to get any image matches for medium to low compressions, a less strict criteria
was needed. The idea of a set tolerance that could hold a value for the maximum

19

acceptable absolute error for a particular pixel came up. This tolerance would work
much like a range around the original compressed sample image that the generated
compressed image could have its pixel values fall within. Here is a simple example of
how this works:

Original Compressed Sample Imageof 3 pixels=[22,127,240]

Generated Compressed Imageof 3 pixels=[24,124, 247]

Tolerance for maximumabsolute valueerror allowed=3

The pixel values from the two images would be subtracted and the absolute value
between them determined. For the first pixel this would be the value 2. Since 2⩽3

the first pixel is acceptable. For the second pixel the value would be 5, and since
3⩽3 , this is also an acceptable pixel. For the third pixel the difference value is 7.

Since 7>3 this is not an acceptable pixel and the generated image would not be a
match.

This method using a tolerance to allow more possible image matches with minimal error
worked much better for getting any matches for non-highly compressed images.
However, the flaw was still the same as before with an exact match. What if an image
was a perfect match for every pixel value, except one that was over the tolerance? This
almost perfect match, minus the single pixel, is discarded. This leads to the next
improvement in image comparison criteria.

A number needed to be attached to the generated compressed image on how close
overall the image was. A percentage match was then developed to say how close the
generated compressed image matches the compressed image sample. This
percentage is calculated by summing up the total absolute values of the error in pixels.
This sum divided by the amount of pixels in the image gives the average pixel error
number. The average pixel error can range from the minimum to the maximum
allowable pixel value (or 0 to 255 in the case of standard 8 bit images). This average
pixel error divided by the maximum minus the minimum allowable pixel value and then
multiplied by 100 gives the percentage difference. Subtracting this number from 100
gives the percentage of how similar the two images are. The similarity percentage
makes more logical sense when comparing two images closely related, and that is why
it is used. The equations for this is as follows:

Image difference percentage=
∑|(samplepixel i−generatedpixel i)|

(numberpixels∗(maxpixelvalue−minpixelvalue))
∗100%

Image similarity percentage=100%− Imagedifference percentage

20

Now with the image similarity percentage, many more images were able to be matched
to the compressed sample image. A parameter was added before the algorithm runs
for the required minimum similarity percentage to have a match. If the calculated
image's similarity percentage is greater than this minimum, a match is found and
outputted before the next iteration.

What was found when using both the tolerance and similarity percentage criteria, was
that the tolerance had a negative impact on higher quality compressions, and a neutral
impact on low quality compressions. This was because low quality compressed images
already had many exact matches, and using the modified brute force algorithm, exact
matches could already be found within a small amount of time. For higher quality
compressed images there are far fewer image matches. Using a tolerance in addition
to a minimum percentage match produced no matches until the tolerance was either
raised absurdly high, or the minimum acceptable similarity percentage lowered. With
too flexible a match criteria, the “matches” become much more grainy, and very
incorrect when compared to the compressed sample image. The tolerance can be a
beneficial criteria for very low to medium quality compressions, where there are too
many exact image matches.

The tolerance is useless and sometimes harmful for any comparison criteria other than
that “sweet spot” between low and medium quality compressions. For these reasons,
the tolerance's use was discontinued as a match criteria. However, the total number of
pixels violating a set tolerance is still logged in order to research a possible trend in the
future.

Building upon the similarity percentage criteria, the idea of comparing the edge
detections of two images came up. This method would work just like comparing the
compressed sample image to the generated compressed image, only instead it would
compare the outputs after running each image through an edge detection algorithm. As
an example of what these edge detections look like can be seen in the following figures.
The idea behind this comparison is that the compressed sample edge detection should
be close to the original uncompressed image's edge detection. This would mean that if
the generated compressed image's edge detection matched the compressed sample,
the generated image could be declared a match. A similarity percentage was also used
for this comparison method in the same way as before.

21

However, using the edge detection percentage match criteria did not help produce
image matches that were not already found using the image similarity percentage. This
is based on the fact that edge detection algorithms focus on using the pixel color values
to produce an edge detection. So if an image's pixel values matches another image's
pixel values (they are similar), the edge detections will also be similar proportionally.
The added cost of processing that the edge detection algorithms added was also very
costly. The number of iterations per second was one hundred times smaller when using
these calculations. Therefore, the use of edge detection as a match criteria was
discontinued.

22

Figure 14: Sobel Edge Detection of UncompressedFigure 13: DCT Example: Uncompressed image

Figure 15: DCT Example: Compressed image Figure 16: Sobel Edge Detection of Compressed

Genetic Algorithms

Even with the modified brute-force method, the run-time of the algorithm still took an
exceptionally long time. While only a subset of all possible images was being tested,
there can still be a large number of input images that must be generated. When the
overhead of the comparison and convergence criteria are applied, the processing
runtime for a restoration algorithm is still very large. It became clear that another
method was needed in order to find the best match to the original uncompressed
image.

Genetic algorithms have evolved as more intelligent ways to find a best solution instead
of relying on the brute-force method. They work by combining ideas taken from
evolution. In the general sense, genetic algorithms start off by selecting members of
the first generation, either at random from the data space or based on some other
algorithm. Some processing then takes place that modifies the members in some way.
Then, a fitness function is run that determines which data members will survive to
become the next generation. Out of the remaining members, additional data elements
are created by breeding them together. Other mutations are created by slightly
modifying existing data members. Finally, some new data members are generated at
random to finish out the next generation. These additions to the surviving members are
used to ensure that the global best possible value is found instead of some localized
best value. This continues for multiple generations, sometimes going for a set number
of generations, and other times going until the program determines that the best
possible value has been found.

The restoration method uses a genetic (also known as evolutionary) algorithm that
simulates the principle of Natural Selection and Darwin’s theories on Evolution. The
program takes an original JPEG image as input and generates a certain number of
slightly modified random copies for the first population of images. The purpose in this
case being to determine what the uncompressed image of the original JPEG would look
like. Mutation and crossover are then applied to each population resulting in a new
batch of images for the next generation.

There are many variables in the evolutionary algorithm restoration program such as
mutation rate, mutation range, and crossover rate. The mutation rate has possible
values of 0% to 100%. Mutation rate refers to the amount of images in each trial that
are mutated with random pixel changes. The mutation range can have values of
generally 0 to 255 in a standard 8 bits per sample image. The mutation range is how
much the program can change the number value of the pixel. For example, a given
pixel has a color value of 125 in this hypothetical situation and the range is set at 5.
This means that the program can set the transformed color value anywhere between

23

120 and 130 (depending on the random number selected). The crossover rate can
range from 0% to 100%, and determines how many images in the population will
randomly “breed” with another image. Crossover rate is a percentage of how images
are combined with another image to produce a new “child” image for the next
generation of images. The program mutates and does crossover randomly respective
to their set percentages until 100 new images are filling spots for the next generation.

For each generation of images completed, a summary of information is outputted to the
screen as well as the log file. This includes the best image match that generation, its
fitness value (similarity percentage), and the average fitness for all the images in the
generation. The log file is also sent additional information such as the worst image in
the population for each generation, and the all the settings of the variables to produce
the results. The final result of the algorithm is a complete log file, a TIFF of the best
image, the JPEG of the best image that matched the compressed seed image, and the
percentage similarity of the best image JPEG compared to the compressed seed
image. All of the variables involved in the algorithm have an effect on how well the final
image matches the compressed seed image.

Many other variables exist in an genetic algorithm such as this. Those variables are:
quality, range, population size, number of generations, mutation number maximum, and
elitism. Quality is simply the quality of the compression of the JPEG image in question.
Photoshop and other programs allow you to change this from a default of 75 or so.
Range is used for setting up the evolutionary algorithm’s first population of images and
the value bounds to modify them by. Population size is how many images are in each
generation available for mutation and crossover. Number of generations is how many
times the mutation and crossover will take place on the images to produce new slightly
modified images. Mutation number maximum is a cap on how many randomly selected
pixels can be modified per image. Elitism is a setting to keep the best image in the
population from generation to generation unchanged with no mutation or crossover to
mess it up.

The results of using this new genetic algorithm to recover lost image detail was
promising. In the vast majority of tests run, the genetic algorithm could acquire the
same restoration quality as the modified genetic algorithm in about half the time.
However, due to using the same comparison criteria for both of these algorithms the
genetic algorithm did not obtain a higher quality image restoration, it just obtained an
equal one faster.

24

Initial Restored Images

The following images illustrate some of the work to date and the success this project
has had in restoring some of the data lost during compression.

This is a collection of images showing a direct comparison of the compressed image
sample on the left column (starting image), the best match from the modbruterand
algorithm in the center column, and the best match from the genetic algorithm on the
right column. In every row, the JPEG quality increases.

25

Figure 17: Original
uncompressed image
sample.

26

Modified Brute Force Value Combinations Algorithm

This algorithm provides a fast and computationally simple way to generate the linear
search images from a limited number of combinations. The basic idea behind this
algorithm is that it mimics binary number counting in order to quickly generate the
combinations. To accomplish this, the two-dimensional image must first be “unrolled”
so that it becomes a one-dimensional array, where each row in the 2-D image is placed
in order next to each other in the array. This array is then copied and becomes the
working array. This copy is necessary as the original array is used to calculate the
bounds for each pixel based on the range around each pixel value that must be
searched. Each element is set to its minimum value based on the specified range.

For the main part of the algorithm, the idea is that it will loop through the values for
each pixel and roll them over much like an odometer, although the values are not
counted in a “standard order”. The first array element is designated as the anchor
element. This anchor drives the main part of the algorithm as it spins through the range
of values specified. Once this element reaches its maximum value (original value +
range up to the maximum possible value for that pixel), it then rolls over back to the
minimum value. The roll over then triggers a walk through the array to find the next
value to increment. If the next element in the array has not reached its maximum value,
it is incremented and the main algorithm runs again with the anchor element spinning
from minimum to maximal values. If the next element is at its maximum value,
however, it is then set to its minimum and the rest of the array is walked until a value
can be incremented.

To illustrate how this algorithm works, consider the following table. The array contains
three values and was initialized to {100, 236, 58} with a range one (three surround
values from value -1, value, and value + 1).

The values in this table range from top to bottom, left to right. As can be seen, the
algorithm does generate all possible combinations of values in the array based on the
range and the initial values.

27

Figure 18: Sample MBF Counting output

A slight problem with this method is that it can sometimes generate duplicate
combinations if the input values are already at their boundary conditions for the specific
data type. A solution to this would be to create another array to store the old
combination and then test it against the newly generated combination. However, the
added processing complexity of doing this would likely be greater than simply dealing
with an occasional duplicated combination.

DISCUSSION

Restoration of discarded image data is a long and complex process, and is only now
possible due to advances in computer processors and computer science. The
techniques used to restore this information are computationally complex, and as stated
previously, take some time to run.

True restoration, where an exact pixel-for-pixel match of the original images, is likely not
currently possible. There are several reasons for this, the first being that computational
resources do not currently exist to test every possible input image in a reasonable
amount of time. A form of the brute-force method is necessary in order to test all
possible images, yet a brute-force method applied to this problem would take far to long
to be useful. Instead, the best means currently available is to use a genetic algorithm
and converge towards an image that is better than the compressed input yet still not a
perfect recreation of the original uncompressed image. This image would have some of
the detail that was lost due to the compression method used, making the image more
suitable for computational and visual display applications.

Many of the techniques used were selected because they are compression-neutral.
This means that they are not tied to any particular compression format. The advantage
of this is that once the techniques are developed, they can be applied to different lossy
compression methods by plugging in the appropriate compression codec. The
disadvantage to this, however, is that it does not take advantage of any signal
processing techniques that could be applied to a specific compression method.

Research is ongoing in both the compression-neutral method and with the signal
processing methods specific to a compression format. Doing both simultaneously will
find general methods that apply to multiple formats as well as specific methods that can
improve the quality of the restoration work. Working on both methods in parallel also
helps in that there is some commonality between the two, and different approaches
have created techniques that are useful to both research paths. For example, some of
the convergence work on the generic compression restoration path may be applicable
to help out the signal processing path determine when to stop processing.

28

The software libraries chosen for this project were the Independent JPEG Group's
libjpeg for DCT JPEG compression and Jasper for JPEG-2000 wavelet compression.
These libraries are Open Source, thus allowing the research to be done without paying
a large licensing fee to a proprietary vendor. They also allow the source code to be
examined so that a thorough understanding of the libraries and the codecs could be
obtained.

The biggest problem that arose from this research is how to determine convergence
towards the original uncompressed image. Lossy compression has several caveats
that can make the problem very difficult. For low levels of compression, convergence
approaches more of a one-to-one ratio of input image to compressed image. This
makes it fairly easy to find a close match when a generated image is compressed and
matched to the original compressed image. At higher compression levels, convergence
skews away from a one-to-one ratio to more of a many-to-one ratio. The primary
reason for this is the distortions introduced from the lossy compression can cause
multiple images to generate similar compressed images. In this case it becomes
difficult to decide which image to choose.

Some research was done to deal with the many-to-one convergence problem. Once
the multiple matches to the input compressed were selected together, they were
averaged together into a single estimate of the original image in an attempt to try to
smooth out the minor differences between images. This will work to a slight degree and
can produce an image that is more visually appealing in some cases. Averaging tends
to have the effect of removing noisy areas in the restored image. However, it still may
not be useful for analytical image processing on the restored image depending on what
level of detail is needed. There is also the drawback that the more image matches you
average, the closer the image reverts to the input compressed, and the artifacts return.

29

Convergence to a single solution is also difficult simply in determining when the
processing is finished. In addition to the many-to-one issue, there is also the problem
of not being able to computationally test the entire input space. This means that there
is more of a likelihood of finding an image that is close to the original uncompressed
image instead of the exact uncompressed image. So the problem then becomes one of
determining when an image that is a “good enough” match to the original has been
found.

30

Figure 21: Example of an exact image match from
modbruterand algorithm.

Figure 22: Average of 3 quality 10 image matches.

Figure 20: Sample image compressed with JPEG at
10 quality (small file size).

Figure 19: Original uncompressed sample image.

Humans are good at this type of determination as our brains have developed to process
visual stimuli. Computers, however, must be trained and even then it is difficult to
develop an automated system with a high success rate. Using an exact pixel-by-pixel
match can be harmful as it generates so few results that it misses images that might
visually be valid yet suffer a minor difference from the original (such as having an
overall histogram that differs from the compressed input image). On the other hand,
widening the criteria can result in such a large number of matches that they
contaminate the valid image results.

Some signal processing algorithms could be used here to help determine the matches
by processing the images in frequency space. However, these methods can be highly
computationally intensive. One of the problems with this work is finding ways to quickly
scan enough images so that a best guess of the original uncompressed image can be
found in a reasonable amount of time. Signal processing in this case would add to the
runtime of the application and actually slow things down during processing. So far the
above mentioned percentage method has shown a good balance between finding
enough matches to find a better approximation of the original uncompressed image.

Genetic algorithms give us another way to determine when to stop processing. As
previously mentioned, genetic algorithms converge to a solution more quickly than the
other methods studied. Using this, we could stop processing and consider a solution to
be found after a certain number of generations have been processed through the
genetic algorithm.

One of the interesting theories that has come out of this work is that restoration will
restore the detail lost during compression, but the restored image might not have the
same histogram as the original uncompressed image. There are several reasons that
can cause this to happen. After lossy compression is applied, the compressed image
can exhibit a slightly different histogram than the original uncompressed image. The
reason here is that some pixels are “smoothed out” so that an area that might originally
have had pixels of different colors might be compressed into an area of a single
average color. This then leads to the next case, where generated images from the
original compressed sample can recreate the detail that was in the original image but
comprised of different colors than in the original.

To understand this, one has to look at images as a series of edges. Each object in an
image, be it a face, road, or what not, is made up of different edges that are created by
the gradient between adjacent color areas. When the uncompressed image is lossy
compressed, there is a reduction of colors as part of the compression process. This
reduction of colors means that some of the extremely fine detail in the image might be

31

lost and that the remaining detail is comprised of edges with a slightly different color
gradient than the original. The algorithms to generate test images from the original
compressed image are then already starting with data whose histogram differs slightly
from the original. Some of these images can then generate the same detail but with
some color gradients that differ from both the compressed seed and the uncompressed
original image. This is also one of the reasons that determining when an image match
has been found since the histograms between test image and compressed seed may
be slightly or even highly different. The previously-mentioned edge-detection
experiments were done in an attempt to quickly scan an image to see if the edges
matched up.

There are several ways to address this issue. The first is to computationally modify the
histogram of the guessed image so that it matches the compressed sample. While the
histogram would still differ slightly from the uncompressed original, matching it to the
compressed sample would bring it much closer to the look of the original image. This
method may have some unintended side-effects that could cause some of the detail to
be lost again. Another method could be to only modify certain areas of the test image
to match the similar area in the compressed sample. Here, the histogram of subsets of
the image would be modified instead of the entire image.

The biggest gains in image quality thus far have been observed within the highly
compressed images. These images have very noticeable artifacts and poor color
variance. Also, as previously stated there are many more image matches that will
compress exactly to the input compressed sample image. This guarantees an exact
match solution has been found, and when compared with the uncompressed image
sample is more visually appealing than the compressed sample. This has been the
best accomplishment thus far with the ability to see detail has been restored despite a
slight graininess to the match image.

However, the tables turn when the image is not highly compressed and is a good
approximation to the original uncompressed image. This narrows down the possible
exact image matches to such small a number our algorithms cannot compute enough
image guesses to ever find it. It was estimated that for a default quality 75 JPEG
image, the percentage of image matches out of 204096 combinations that would
compress to create the same JPEG was at the very least less than 0.0000000001%.
This meant that out of all the image combinations possible, there was only a very small
chance a randomized image would ever match. Either increased computing power to
get through more iterations, or intense optimization of algorithms will be necessary to
get exact image matches for less compressed images. For the algorithms using
randomized image guesses, finding an image match to a lightly compressed image is
similar to guessing six numbers and winning the lottery, only in this case those six
numbers are enlarged to the number of pixels in the image.

32

The genetic algorithm may be very useful for the less compressed images. Since our
algorithms rely on detecting a similarity percentage between images to determine when
an image is a match, this could lend itself nicely for lower compressions that are much
more sensitive to small mutations in pixel changes. Using this method the genetic
algorithm could slowly creep towards a higher and higher quality match.

FUTURE WORK

There are still research topics that must and will be investigated in order to truly develop
and optimize this process. In reality, some of these topics could continue on for years
as they are dependent on developing technology and image science. However, they
are interesting and important topics that can do much to advance the state of the art in
this area of computer science.

Genetic Algorithm Refinements

One of the first future research topics is a refinement of the genetic algorithm method
used thus far. There are several ways to perform genetic algorithms, and some
additional methods must be researched to determine their effects upon performance.
Also, more research must be done on the fitness function in determining what elements
survive into the future generations. Some additional work is needed in determining
when to stop processing, either when a certain fitness function is reached or after a
fixed number of iterations.

An issue observed with running very large generation amounts (i.e. 1,000,000) was that
after the first 500 to 10,000 generations, there is very little improvement if any in fitness.
This is probably due to a genetic algorithm's tendency to get stuck at local maxima.
Once a better comparison method is found, combined with some additions to avoid
local maxima, the results should continue improving and come closer to the
uncompressed image sample as the number of generations increases. This would
allow the genetic algorithm to have more of a linear relationship to image quality gains
rather than the logarithmic behavior currently.

“Large Scale Fourier or Wavelet Analysis”

A new way of using Fourier or Wavelet analysis will also be researched to determine its
effects upon generating sample images and determining when processing is complete.
Traditionally, Fourier and descendant mathematical analysis techniques start from a
fixed point on an image, generally a corner, and process the entire image. Fourier
analysis in this usage can produce a mathematical model of the image. It is currently
theorized that performing this analysis on a larger scale can result in better

33

approximations of the image. Here, instead of starting at a single fixed position, each
pixel of the image would be used as a starting position so that the analysis would be
done many times and iterate through different patterns across the image. The idea is
that doing this across the entire image will provide a series of mathematical equations
that can be used to describe the image. Performing the analysis from one starting point
can lead to situations where some pixels are missed during the construction of the
transform. The missing pixels can be important, either being an image artifact or some
detail in the image. Skipping over these pixels can effect the quality of the transform
that is constructing for an image. By performing a large number of transforms, these
equations can then be averaged together to provide an average mathematical model of
the image. This average model might be a better approximation since it would be
mathematically constructed of various models that together touch each pixel of the
image.

Once this average is determined, the large scale analysis of the image could be used
for some different purposes. The first purpose is in determining when processing is
complete. The current theory is that as the image artifacts are removed, the standard
deviation of the image equations will slowly decrease. In layman terms, this means that
the image distortions would be decreasing as more of the original image is restored.
Also, this technique could be used to provide additional inputs to the genetic algorithm
as it could be run on the surviving members of a generation to create addition test
images within the next generation. The downside of this method is that creating each
transform is a compute-intensive process, and many transforms would be generated for
each image.

Continuous Random Number Values

Upon preliminary analysis of trends in JPEG images, there seems to be a pattern in the
differences between the lossy compressed pixel value, and the original image. The
pattern roughly follows a cosine waveform as the Discrete Cosine Transform is used in
JPEG. An example showing this behavior is below:

Image Type 1st

Pixel
2nd

Pixel
3rd

Pixel
4th Pixel 5th Pixel 6th Pixel 7th Pixel 8th Pixel

Original 65 79 66 90 54 68 89 101

Compressed 70 83 68 90 52 65 84 95

Difference +5 +4 +2 0 -2 -3 -5 -6

Observe the Difference row and you might see a slight sinusoidal pattern to the
numbers. This can be a key to optimizing the random numbers used to modify pixels in
the Modified Brute Force Method as well as the Genetic Algorithm Method. In order to

34

verify this occurs reliably, many images will need to be processed and tested to verify
the pattern occurs in most images, and to what extent. The collected data on many
different images would then be analyzed for patterns and similarities they all contain to
develop an algorithm. This can then be used to strengthen the random numbers
modifying pixels with a much more narrow range of values to randomly select, as
opposed to a much larger range. The modification to the random numbers would then
act as a limiter, preventing very unlikely random numbers to be tested, and hence
reducing the problem size by a magnitude for each single pixel value it excludes.

For a 64x64 pixel image (4096 pixels total), using a range of 40 different values for a
random number would create 404096 distinct images to randomly guess. Using a limiter
to prevent unlikely values within the range could reduce this to 10 different values. This
would create a problem size of 104096, roughly 44096 times smaller than the original
problem space.

The problems that could arise from this optimization would be the possibility that the
original image has large amounts of variance in its pixel values, and therefore the limiter
may not allow image combinations with high variability that are in fact suitable matches.
Edge detection can be used to minimize this problem. In most cases, the highest
variability in images occurs at edges. These are the parts of the image with the highest
contrast differences. Edge detection algorithms are trained to find those high contrast
areas and create a resulting image outlining them. Edge detection can be run on the
compressed JPEG image to create an outline image as a guideline for when not to use
the limiter algorithm. This would allow high contrast areas to receive a greater range of
pixel values that may match the original image more accurately. Another issue using
this method is the specific sinusoidal compression required to find this sort of trend.
Currently this could only be applied to mostly JPEG compression.

Edge Detection Post Processing

Edge detection might also be used as a post processing tool for image cleanup.
Current methods for cleaning image artifacts involve slight blurs and sharpening as
stated before. However, these techniques lose the small detail in an image and while
making it more visually appealing, makes it less accurate. None of these techniques
employ edge detection to limit the blur and sharpening algorithms. The use of edge
detection can be used to determine edges that are important to the image and areas
that are not. This can be used to create a “smart” blur and sharpen technique that
would lose less detail while removing unpleasing artifacts.

There are of course cases that are too close to determine if they are an important
contrast pixel, or just a bad artifact. In these cases, the pixel could be reverted back to
the compressed seed image rather than risk the guessed or blurred value that could be

35

very inaccurate. This technique can be used in any of the methods, but especially
lends itself to the Genetic Algorithm method. The technique can allow for some pixels
to gradually alter for the better, while others in question would not drift to a worse value.
This would eliminate the noise seen in the preliminary restored image samples, and
could result in a much more visually appealing and accurate match.

Neural Network for Artifact Reduction

Neural networks are used to detect patterns within a given dataset. They are good at
this because pathways through the network are created as data is run through it. At the
end, patterns within the data can be identified by examining the pathways inside the
network. The more a pattern appears, the more a pathway within the network is
“etched in stone”, so to speak. This also allows for modeling purposes, as a network
can be trained on a certain mathematical model and then used for prediction purposes
by seeing what the output would be given certain inputs.

Research into this area should be done to see if neural networks can be used to reduce
artifacts in lossy compressed images. It might be possible to train a neural network on
an image, either using the above-mentioned analysis or some new algorithmic method.
Once this is done, it should be possible to use a network to detect where exactly the
image distortions are within a given image. This can help lead to localized processing,
where instead of processing the entire image, it is only processed where the artifact
impacts the image. This could lead to a significant reduction in processing times since
the entire image would not need to be analyzed.

Another possible area where neural networks could help is in creating guess images
based on the compressed sample or generated test images. Here, neural networks
could be combined with the large scale analysis technique to try to predict what the
original image should look like. This image could be used as an input into the genetic
algorithm and could possibly help speed that algorithm up, depending on how well the
prediction is done.

Recompression Study

Testing was done to determine that no matter what program, what implementation, and
what optimizations used in a JPEG compression, the input image still produced the
same output compressed image. The only technicalities with this testing came up for
programs or implementations lacking the options to set sub-sampling or integer/float
precision. With all the same options however, the output image was pixel value equal
(despite a few optimization differences in file sizes from different implementations).

36

This same testing was applied to JPEG2000, although not at the same scale or
accuracy as JPEG due to a lack of quality open source implementations and programs
with the ability to create JPEG2000 images.

More JPEG2000 Studies

Preliminary observations on JPEG2000 testing has shown an interesting difference
from the old DCT JPEG compression. Since JPEG2000 is a newer and more
computationally complex compression, it does take longer to do iterations than JPEG.
However, JPEG2000's wavelet basis provides it a much closer approximation to the
vast majority of pixels. This means the range required to randomly modify pixels by can
be smaller, and hence have magnitudes less images to actually compute.

The randomized methods used so far also may not be suited for JPEG2000 due to its
tendency to create grainy image matches, as well as JPEG2000's pickier algorithm's
used when compressing pixel values. With JPEG, one could get away with changing a
few pixels by small amounts and creating the same output compressed image.
JPEG2000, however, is more sensitive to small changes, and somewhat unpredictable.
Once this sensitivity is understood better, it could be exploited well with the genetic
algorithm by making small changes and progressively increasing image quality.

CONCLUSION

Historically, restoring data that was discarded during lossy compression has been
considered impossible. Modern technology and computer science, however, have
recently evolved to a point where it is possible to attempt this problem. Restoration is
still difficult and can require an enormous amount of computing power.

The best way to ensure a complete match is to use some form of a brute-force method.
This technique tries every possible combination of inputs to try to match a desired
output. When it comes to restoration of data, this is also the method that takes the
most computing time and the runtime of such a program would likely last longer than
our species. A compromise can be made that attempts to get a better image that exists
between the quality of the uncompressed original image and the compressed image.
This compromise is important in that, for many purposes, the exact original image is not
necessary.

The other method to accomplish the compromise involves generating algorithms and
techniques to create a general framework that will work with any type of lossy
compression. In this case, a compression codec can be used with the framework and
some form of restoration process can be run. This is useful in that it allows current

37

compression techniques to be restored, and it can work with any future lossy
compression methods that may be developed.

Accomplishing these techniques requires advances in modern computer science.
Genetic algorithms are an intelligent way of performing a brute-force task. However,
they can accomplish the task in a much shorter time than what a brute-force method
requires. Additionally, multiple-core processors are becoming available, and processors
in general have become much faster to the point where most computers are actually
overpowered for their tasks at hand. The advances in processing hardware and in the
algorithms that can run on that hardware can make restoration possible where even just
a few years ago it was for all intents and purposes impossible.

The ability to restore this lost data is useful for several purposes. It can take data that
has been previously compressed and restore it to a better quality so that it is more
usable for various purposes. One such purpose is for use in The National Map, where
data that does not meet certain requirements due to it being highly compressed could
be restored to a point where it can be included. Data in this case can go from barely
acceptable for simple visual display to being usable through The National Map for
cartographic and high end visual purposes.

Another area where this technology would be useful is in transferring extremely large
datasets. Currently, the datasets that comprise the 133 Urban Areas Project range in
size from seven to 240 gigabytes in size. At these file sizes, it could take a month of
continual and uninterrupted downloading over a telephone modem. However, lossy
compressing this data, downloading it, and then restoring it on the client computer can
reduce this download time from weeks to hours. This can make data available to
people who might otherwise not be able to access it. It can also allow data to be more
easily stored by those who would choose to compress it and restore it later when they
need it.

Several interesting discoveries have been made so far by this research. One is that
while the detail of the data can be restored, this detail might not necessarily match the
histogram of the original image. This is due to how lossy compression works by
discarding some data and smoothing areas of an image out so that it compresses
better. While the detail can be restored, the histogram must be matched to the
compressed image sample to try to match the actual histogram.

38

REFERENCES

Beowulf.org: The Beowulf Cluster Site. <http://www.beowulf.org>. Sycld Software.

2004.

Black, Paul E, Randomized Algorithm,

<http://www.nist.gov/dads/HTML/randomizedAlgo.html>. Dictionary of Algorithms

and Data Structures. National Institute of Science and Technology. February

2005.

brute force – Webopedia.com. <http://itmanagement.webopedia.com/

TERM/B/brute_force.html>. Jupitermedia Corporation. 2004.

DCT. <http://www.escena.de/british.php?sitekey=tech_komm_transform>. ESCENA.

December 2004.

Fan, Zhigang, and de Queiroz, Ricardo L., Identification of Bitmap Compression

History: JPEG Detection and Quantizer Estimation, IEEE Transactions on Image

Processing, Vol 12, No. 2, February 2003, pp. 230-235.

Russ, John C., 1995, The Image Processing Handbook. 2nd ed. CRC Press.

Salomon, David, 2004, Data Compression The Complete Reference. 3rd ed. Springer.

Sayood, Khalid, 2000, Introduction to Data Compression. 2nd ed. Morgan Kaufmann.

39

http://www.beowulf.org/
http://www.escena.de/british.php?sitekey=tech_komm_transform
http://itmanagement.webopedia.com/TERM/B/brute_force.html
http://itmanagement.webopedia.com/TERM/B/brute_force.html
http://itmanagement.webopedia.com/
http://www.nist.gov/dads/HTML/randomizedAlgo.html

	CONTENTS
	KEY WORDS
	ABSTRACT
	INTRODUCTION
	BACKGROUND
	Lossy Compression
	Discreet Cosine Transform
	Wavelet Compression
	Problems with Compression Artifacts
	A New Theory of Compression Restoration

	METHOD AND TESTING
	Data Collection
	Brute-Force Method
	Modified Brute-Force Method
	Comparison Work
	Genetic Algorithms
	Initial Restored Images
	Modified Brute Force Value Combinations Algorithm

	DISCUSSION
	FUTURE WORK
	Genetic Algorithm Refinements
	“Large Scale Fourier or Wavelet Analysis”
	Continuous Random Number Values
	Edge Detection Post Processing
	Neural Network for Artifact Reduction
	Recompression Study
	More JPEG2000 Studies

	CONCLUSION
	REFERENCES

